Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
CRISPR J ; 7(2): 88-99, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38564197

RESUMO

Rhodnius prolixus is currently the model vector of choice for studying Chagas disease transmission, a debilitating disease caused by Trypanosoma cruzi parasites. However, transgenesis and gene editing protocols to advance the field are still lacking. Here, we tested protocols for the maternal delivery of CRISPR-Cas9 (clustered regularly spaced palindromic repeats/Cas-9 associated) elements to developing R. prolixus oocytes and strategies for the identification of insertions and deletions (indels) in target loci of resulting gene-edited generation zero (G0) nymphs. We demonstrate successful gene editing of the eye color markers Rp-scarlet and Rp-white, and the cuticle color marker Rp-yellow, with highest effectiveness obtained using Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) with the ovary-targeting BtKV ligand. These results provide proof of concepts for generating somatic mutations in R. prolixus and potentially for generating germ line-edited lines in triatomines, laying the foundation for gene editing protocols that could lead to the development of novel control strategies for vectors of Chagas disease.


Assuntos
Doença de Chagas , Rhodnius , Animais , Feminino , Edição de Genes/métodos , Rhodnius/genética , Rhodnius/parasitologia , Sistemas CRISPR-Cas , Insetos Vetores/parasitologia , Doença de Chagas/genética , Doença de Chagas/parasitologia
2.
Insect Mol Biol ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38450861

RESUMO

Multiple Wolbachia strains can block pathogen infection, replication and/or transmission in Aedes aegypti mosquitoes under both laboratory and field conditions. However, Wolbachia effects on pathogens can be highly variable across systems and the factors governing this variability are not well understood. It is increasingly clear that the mosquito host is not a passive player in which Wolbachia governs pathogen transmission phenotypes; rather, the genetics of the host can significantly modulate Wolbachia-mediated pathogen blocking. Specifically, previous work linked variation in Wolbachia pathogen blocking to polymorphisms in the mosquito alpha-mannosidase-2 (αMan2) gene. Here we use CRISPR-Cas9 mutagenesis to functionally test this association. We developed αMan2 knockouts and examined effects on both Wolbachia and virus levels, using dengue virus (DENV; Flaviviridae) and Mayaro virus (MAYV; Togaviridae). Wolbachia titres were significantly elevated in αMan2 knockout (KO) mosquitoes, but there were complex interactions with virus infection and replication. In Wolbachia-uninfected mosquitoes, the αMan2 KO mutation was associated with decreased DENV titres, but in a Wolbachia-infected background, the αMan2 KO mutation significantly increased virus titres. In contrast, the αMan2 KO mutation significantly increased MAYV replication in Wolbachia-uninfected mosquitoes and did not affect Wolbachia-mediated virus blocking. These results demonstrate that αMan2 modulates arbovirus infection in A. aegypti mosquitoes in a pathogen- and Wolbachia-specific manner, and that Wolbachia-mediated pathogen blocking is a complex phenotype dependent on the mosquito host genotype and the pathogen. These results have a significant impact for the design and use of Wolbachia-based strategies to control vector-borne pathogens.

3.
Integr Comp Biol ; 63(6): 1550-1563, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-37742320

RESUMO

In the past 20 years, sequencing technologies have led to easy access to genomic data from nonmodel organisms in all biological realms. Insect genetic manipulation, however, continues to be a challenge due to various factors, including technical and cost-related issues. Traditional techniques such as microinjection of gene-editing vectors into early stage embryos have been used for arthropod transgenesis and the discovery of Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR-Cas) technologies allowed for targeted mutagenesis and the creation of knockouts or knock-ins in arthropods. Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) acts as an alternative to embryonic microinjections, which require expensive equipment and extensive hands-on training. ReMOT Control's main advantage is its ease of use coupled with the ability to hypothetically target any vitellogenic species, as injections are administered to the egg-laying adult rather than embryos. After its initial application in the mosquito Aedes aegypti, ReMOT Control has successfully produced mutants not only for mosquitoes but for multiple arthropod species from diverse orders, such as ticks, mites, wasps, beetles, and true bugs, and is being extended to crustaceans, demonstrating the versatility of the technique. In this review, we discuss the current state of ReMOT Control from its proof-of-concept to the advances and challenges in the application across species after 5 years since its development, including novel extensions of the technique such as direct parental (DIPA)-CRISPR.


Assuntos
Artrópodes , Sistemas CRISPR-Cas , Feminino , Animais , Artrópodes/genética , Ovário , Mosquitos Vetores , Células Germinativas
4.
G3 (Bethesda) ; 10(4): 1353-1360, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32122959

RESUMO

Innovative tools are essential for advancing malaria control and depend on an understanding of molecular mechanisms governing transmission of malaria parasites by Anopheles mosquitoes. CRISPR/Cas9-based gene disruption is a powerful method to uncover underlying biology of vector-pathogen interactions and can itself form the basis of mosquito control strategies. However, embryo injection methods used to genetically manipulate mosquitoes (especially Anopheles) are difficult and inefficient, particularly for non-specialist laboratories. Here, we adapted the ReMOT Control (Receptor-mediated Ovary Transduction of Cargo) technique to deliver Cas9 ribonucleoprotein complex to adult mosquito ovaries, generating targeted and heritable mutations in the malaria vector Anopheles stephensi without injecting embryos. In Anopheles, ReMOT Control gene editing was as efficient as standard embryo injections. The application of ReMOT Control to Anopheles opens the power of CRISPR/Cas9 methods to malaria laboratories that lack the equipment or expertise to perform embryo injections and establishes the flexibility of ReMOT Control for diverse mosquito species.


Assuntos
Anopheles , Malária , Animais , Anopheles/genética , Sistemas CRISPR-Cas , Feminino , Edição de Genes , Mosquitos Vetores/genética
5.
Front Cell Infect Microbiol ; 10: 614342, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33520739

RESUMO

The piRNA pathway is a specialized small RNA interference that in mosquitoes is mechanistically distant from analogous biology in the Drosophila model. Current genetic engineering methods, such as targeted genome manipulation, have a high potential to tease out the functional complexity of this intricate molecular pathway. However, progress in utilizing these methods in arthropod vectors has been geared mostly toward the development of new vector control strategies rather than to study cellular functions. Herein we propose that genetic engineering methods will be essential to uncover the full functionality of PIWI/piRNA biology in mosquitoes and that extending the applications of genetic engineering on other aspects of mosquito biology will grant access to a much larger pool of knowledge in disease vectors that is just out of reach. We discuss motivations for and impediments to expanding the utility of genetic engineering to study the underlying biology and disease transmission and describe specific areas where efforts can be placed to achieve the full potential for genetic engineering in basic biology in mosquito vectors. Such efforts will generate a refreshed intellectual source of novel approaches to disease control and strong support for the effective use of approaches currently in development.


Assuntos
Culicidae , Animais , Culicidae/genética , Engenharia Genética , Mosquitos Vetores , Interferência de RNA , RNA Interferente Pequeno/genética
6.
Emerg Microbes Infect ; 8(1): 8-16, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30866755

RESUMO

Zika virus (ZIKV) is a historically neglected mosquito-borne flavivirus that has caused recent epidemics in the western hemisphere. ZIKV has been associated with severe symptoms including infant microcephaly and Guillain-Barré syndrome, stimulating interest in understanding factors governing ZIKV infection. Heat shock protein 70 (Hsp70) has been shown to be an infection factor for multiple viruses, leading us to investigate the role of Hsp70 in the ZIKV infection process. ZIKV infection induced Hsp70 expression in host cells 48-h post-infection. Inducing Hsp70 expression in mammalian cells increased ZIKV production, whereas inhibiting Hsp70 activity reduced ZIKV viral RNA production and virion release from the cell. Hsp70 was localized both on the cell surface where it could interact with ZIKV during the initial stages of the infection process, and intracellularly where it localized with viral RNA. Blocking cell surface-localized Hsp70 using antibodies decreased ZIKV cell infection rates and production of infectious virus particles, as did competition with recombinant Hsp70 protein. Overall, Hsp70 was found to play a functional role in both the pre- and post-ZIKV infection processes affecting viral entry, replication, and egress. Understanding the interactions between Hsp70 and ZIKV may lead to novel therapeutics for ZIKV infection.


Assuntos
Anticorpos/farmacologia , Proteínas de Choque Térmico HSP70/metabolismo , Piridinas/farmacologia , Tiazóis/farmacologia , Infecção por Zika virus/metabolismo , Zika virus/fisiologia , Animais , Linhagem Celular , Chlorocebus aethiops , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Humanos , Células Vero , Internalização do Vírus/efeitos dos fármacos , Liberação de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Zika virus/genética , Infecção por Zika virus/virologia
7.
Nat Commun ; 9(1): 3008, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068905

RESUMO

Cas9-mediated gene editing is a powerful tool for addressing research questions in arthropods. Current approaches rely upon delivering Cas9 ribonucleoprotein (RNP) complex by embryonic microinjection, which is challenging, is limited to a small number of species, and is inefficient even in optimized taxa. Here we develop a technology termed Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) to deliver Cas9 RNP to the arthropod germline by injection into adult female mosquitoes. We identify a peptide (P2C) that mediates transduction of Cas9 RNP from the female hemolymph to the developing mosquito oocytes, resulting in heritable gene editing of the offspring with efficiency as high as 0.3 mutants per injected mosquito. We demonstrate that P2C functions in six mosquito species. Identification of taxa-specific ovary-specific ligand-receptor pairs may further extend the use of ReMOT Control for gene editing in novel species.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Culicidae/genética , Edição de Genes , Células Germinativas/metabolismo , Ovário/metabolismo , Ribonucleoproteínas/metabolismo , Alelos , Animais , Sequência de Bases , Cruzamentos Genéticos , Culicidae/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , Feminino , Proteínas de Fluorescência Verde/metabolismo , Padrões de Herança/genética , Injeções , Masculino , Mutação/genética , Oócitos/metabolismo , Deleção de Sequência
8.
Artigo em Inglês | MEDLINE | ID: mdl-28869513

RESUMO

Mosquito-borne pathogens place an enormous burden on human health. The existing toolkit is insufficient to support ongoing vector-control efforts towards meeting disease elimination and eradication goals. The perspective that genetic approaches can potentially add a significant set of tools toward mosquito control is not new, but the recent improvements in site-specific gene editing with CRISPR/Cas9 systems have enhanced our ability to both study mosquito biology using reverse genetics and produce genetics-based tools. Cas9-mediated gene-editing is an efficient and adaptable platform for gene drive strategies, which have advantages over innundative release strategies for introgressing desirable suppression and pathogen-blocking genotypes into wild mosquito populations; until recently, an effective gene drive has been largely out of reach. Many considerations will inform the effective use of new genetic tools, including gene drives. Here we review the lengthy history of genetic advances in mosquito biology and discuss both the impact of efficient site-specific gene editing on vector biology and the resulting potential to deploy new genetic tools for the abatement of mosquito-borne disease.


Assuntos
Culicidae/genética , Transmissão de Doença Infecciosa/prevenção & controle , Tecnologia de Impulso Genético , Controle de Mosquitos/métodos , Animais , Sistemas CRISPR-Cas , Vetores de Doenças , Humanos
9.
Insect Biochem Mol Biol ; 87: 81-89, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28676355

RESUMO

Transposons are a class of selfish DNA elements that can mobilize within a genome. If mobilization is accompanied by an increase in copy number (replicative transposition), the transposon may sweep through a population until it is fixed in all of its interbreeding members. This introgression has been proposed as the basis for drive systems to move genes with desirable phenotypes into target species. One such application would be to use them to move a gene conferring resistance to malaria parasites throughout a population of vector mosquitos. We assessed the feasibility of using the piggyBac transposon as a gene-drive mechanism to distribute anti-malarial transgenes in populations of the malaria vector, Anopheles stephensi. We designed synthetic gene constructs that express the piggyBac transposase in the female germline using the control DNA of the An. stephensi nanos orthologous gene linked to marker genes to monitor inheritance. Two remobilization events were observed with a frequency of one every 23 generations, a rate far below what would be useful to drive anti-pathogen transgenes into wild mosquito populations. We discuss the possibility of optimizing this system and the impetus to do so.


Assuntos
Anopheles/enzimologia , Elementos de DNA Transponíveis , Genes de Insetos , Proteínas de Insetos/metabolismo , Transposases/metabolismo , Animais , Animais Geneticamente Modificados , Anopheles/genética , Feminino , Proteínas de Insetos/genética , Malária/transmissão , Mosquitos Vetores , Transgenes , Transposases/genética
10.
Proc Natl Acad Sci U S A ; 112(49): E6736-43, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26598698

RESUMO

Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼ 17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼ 99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda.


Assuntos
Anopheles/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Animais , Animais Geneticamente Modificados , Feminino , Insetos Vetores , Malária/transmissão , Masculino
11.
G3 (Bethesda) ; 5(2): 157-66, 2014 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-25480960

RESUMO

Anopheles stephensi is a principal vector of urban malaria on the Indian subcontinent and an emerging model for molecular and genetic studies of mosquito biology. To enhance our understanding of female mosquito reproduction, and to develop new tools for basic research and for genetic strategies to control mosquito-borne infectious diseases, we identified 79 genes that displayed previtellogenic germline-specific expression based on RNA-Seq data generated from 11 life stage-specific and sex-specific samples. Analysis of this gene set provided insights into the biology and evolution of female reproduction. Promoters from two of these candidates, vitellogenin receptor and nanos, were used in independent transgenic cassettes for the expression of artificial microRNAs against suspected mosquito maternal-effect genes, discontinuous actin hexagon and myd88. We show these promoters have early germline-specific expression and demonstrate 73% and 42% knockdown of myd88 and discontinuous actin hexagon mRNA in ovaries 48 hr after blood meal, respectively. Additionally, we demonstrate maternal-specific delivery of mRNA and protein to progeny embryos. We discuss the application of this system of maternal delivery of mRNA/miRNA/protein in research on mosquito reproduction and embryonic development, and for the development of a gene drive system based on maternal-effect dominant embryonic arrest.


Assuntos
Anopheles/genética , Genes de Insetos , Células Germinativas , Animais , Anopheles/embriologia , Anopheles/fisiologia , Controle de Doenças Transmissíveis , Feminino , Perfilação da Expressão Gênica , Proteínas de Insetos/genética , MicroRNAs , RNA Mensageiro , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...